Simulated microgravity-induced aortic remodeling.
نویسندگان
چکیده
We have previously shown that microgravity and simulated microgravity induce an increase in human and rat aortic stiffness. We attempted to elucidate the mechanism(s) responsible for this increase in stiffness. We hypothesize that an alteration in vessel wall collagen or elastin content or in extracellular matrix (ECM) cross-linking either individually or in a combination is responsible for the increased vessel stiffness. Rats underwent hindlimb unweighting (HLU) for a period of 7 days to simulate microgravity. The contribution of ECM cross-linking to the vessel wall stiffness was evaluated by measuring aortic pulse wave velocity following inhibition of the cross-linking enzymes lysyl oxidase (LOX) and transglutaminase (tTG) and the nonenzymatic advanced glycation end product cross-linking pathway during HLU. Aortic collagen and elastin content was quantified using established colorimetric assays. Collagen subtype composition was determined via immunofluorescent staining. The increase in aortic pulse wave velocity after HLU was significantly attenuated in the LOX and tTG inhibition groups compared with saline (1.13 +/- 0.11 vs. 3.00 +/- 0.15 m/s, LOX vs. saline, P < 0.001; 1.16 +/- 0.25 vs. 3.00 +/- 0.15 m/s, tTG vs. saline, P < 0.001). Hydroxyproline content, a measure of collagen content, was increased in all groups after HLU (2.01 +/- 0.62 vs. 3.69 +/- 0.68% dry weight, non-HLU vs. HLU, P = 0.009). Collagen subtype composition and aortic elastin content were not altered by HLU. Together, these data indicate that HLU-induced increases in aortic stiffness are due to both increased aortic collagen content and enzyme cross-linking activity.
منابع مشابه
Myocardial CKIP-1 Overexpression Protects from Simulated Microgravity-Induced Cardiac Remodeling
Human cardiovascular system has adapted to Earth's gravity of 1G. The microgravity during space flight can induce cardiac remodeling and decline of cardiac function. At present, the mechanism of cardiac remodeling induced by microgravity remains to be disclosed. Casein kinase-2 interacting protein-1 (CKIP-1) is an important inhibitor of pressure-overload induced cardiac remodeling by decreasing...
متن کاملSimulated Microgravity Condition Alters the Gene Expression of some ECM and Adhesive Molecules in Adipose-Derived Stem Cells
Adipose-derived stem cells (ADSCs) are widely used for tissue engineering and regenerative medicine. The beneficial effects of ADSCs on wound healing have already been reported. Remodeling of extracellular matrix (ECM) is the most important physiological event during the wound healing. ECM is sensitive to mechanical stresses and the expression of its components can be therefore influenced. The ...
متن کاملA Study of Alterations in DNA Epigenetic Modifications (5mC and 5hmC) and Gene Expression Influenced by Simulated Microgravity in Human Lymphoblastoid Cells.
Cells alter their gene expression in response to exposure to various environmental changes. Epigenetic mechanisms such as DNA methylation are believed to regulate the alterations in gene expression patterns. In vitro and in vivo studies have documented changes in cellular proliferation, cytoskeletal remodeling, signal transduction, bone mineralization and immune deficiency under the influence o...
متن کاملThe Effect of OSM on MC3T3-E1 Osteoblastic Cells in Simulated Microgravity with Radiation
Bone deterioration is a challenge in long-term spaceflight with significant connections to patients experiencing disuse bone loss. Prolonged unloading and radiation exposure, defining characteristics of space travel, have both been associated with changes in inflammatory signaling via IL-6 class cytokines in bone. While there is also evidence for perturbed IL-6 class signaling in spaceflight, t...
متن کاملMetalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 106 6 شماره
صفحات -
تاریخ انتشار 2009